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ABSTRACT

The MGR[v] algorithm of Ries, Trottenberg and Winter with v = 0
and the Algorithm 2.1 of Braess are essentially the same multigrid

algorithm for the discrete Poisson equation: -AhU = f. In'this report
A

the general diffusion equati?L. -VepWu = f,

we consider-the extension to

p = p(x,y) > Pp> 0 N In particular, for the two-gridrschecme}v:e reobtain
- / Fe Lkt ot
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/// I. Introduction

'\-\n) Multigrid methods are proving themselves as (very) successful tools

for the solution of the algebraic equations associated with discretization

o+ e 0

of Elliptic Boundary-Value problems - see [1], [3], [4], [5], [91\ Never-

theless, it seems we are just beginning to}“bnderstand“ this powerful idea.
Hence, there is a need for continued probing, experimentation and new

proofs - less for the sake of proof and more for the sake of insight. —— ) -+

)-i

In [2] Braess proposed and analyzed a class of multigrid methods. In 5

particular, he considered a particular algorithm for the Poisson Equation -
"Algorithm 2.1". He shows that the contraction number p for a two-grid

method is given by

r| —

(1) P

This result holds whenever & is a polygonal domain whose sides have slope

+1,0 6r © and the discretization satisfies an additional condition zsfj
(see QI of section 2). In [8] Ries, Trottenberg and Winter discuss the 'Eiiﬁ
class of MGR[v] methods for the Poisson Equation in a square. Using Fourier Ei;;
Analysis they obtain an explicit formula for the corresponding contraction B
numbers p[v]. In particular, they obtain - for two grids ij
(2) olo) = 3, oD =5, o[v]=%(—2\()i—;’;%~|-- ]

As it happens MGR[0] is the same as the "Algorithm 2.1" and the results of
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[2] and [8] are consistent. The results of [8] are more precise for more

restricted problems.
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In this report we consider the more general diffusion equation

(3) -Vep(x,y)Wu = f in Q,

0 on 23Q

u

p(x,y) > py >0 and

where Q may be a general bounded piecewise smooth domain, or, Q is a
polygonal domain whose sides have slope + 1, 0, or «. We employ the usual
five-point difference analog of (3) and seek to solve the (large) system of
linear algebraic equations. We consider a class of linear multi-grid methods
which include the MGR[v] methods when p(x,y) = 1. Our basic result is the

following: Consider the two-grid method. Then
1
p < |I MG Lh §~2'(1+Kh)

where || “Lh denotes the energy norm and K is a constant determined by
Py and |vp|l,» the = norm of the gradient of p(x,y). Moreover, the
proof clearly indicates why one should expect great improvement when further
"smoothing" is introduced.

Thus we extend the results of Braess [2], Ries, Trottenberg and Winter [8]

to include a variable diffusion coefficient p(x,y) and more general regions.
In section 2 we formulate the problem and the basic two-grid method of e
solution. In section 3 we prove the basic estimate. This proof proceeds from

a fundamental insight of McCormick and Ruge [7]. Section 4 describes the re-

sults of some computational experiments which lead one to believe that the !Ll,_

results of [2.] are essentially correct for the variable coefficient case as

well, These computations were carried out on the CRAY I at the Los Alamos
National Laboratory. Finally, an appendix gives the basic "energy" estimate [ N
required in section 3,
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. 3
2. The Problem jlf:j:fl
L Given a (small) value h >0 Jlet {(xk,yj) = (kh,jh); k,j = 0, E
I +1, % 2,...} be the associated mesh points in the x - y plane. Let _—
(2.1a) RE:= {(xk,yj); k+j = 0 (mod 2)} ,
- o
4 (2.1b) Ry += Lxay)s (ked) =1 (mod 2)) i
: Let 2 be a bounded domain in the plane with a piecewise smooth boundary )
- RS
i 32 . We wish to define the set of "interior" mesh points, Q. We assume ;:;}
S that h is less than %- the length of each smooth section of 23Q . ?:.ﬂ
The main result, (Theorem 3.1) for the two-grid iterative schemes is iif%
valid in quite general domains provided that we use a modification of -
"approximation of degree 0" (see [6]) to describe the boundary conditions iljf
Definition:* R
. . ]
(i) If (xk,yj) € Ry n Q we say that (xk,yj) e @ if the four -]
neighbors  {(x 7.y5)s (xp_qa¥5)s (xayg1)s (xpoysa)? w
and the line segments from (xk,yj) to each of its neighbors
all lie in Q, the closure of Q. T
(ii) 1f (xk,yj) € R n @ we say that (xk,yj) e if the eight
HE'IgthY‘S {(Xk+~| ’yj)’ (xk_] syj)’ (Xkayj_])s (Xk’yj'”)’ (Xk+] ’yj"'])’
(xk+],yj_]), (xk_1,yj+1), (xk-l’yj-l)} and the line segments from R ;i
(xk,yj) to each of ite neighbors all lie in Q. R
-
-]
(*)Ne must consider the line segments from (xk,y.) to the neighbors only M
in the case of reentrant corners or cusps. © J L
0
1

---------- e e N T Dl e e T e e e e T T e

L S A S A AR A e ST . PO . RIS . . g .
a0 YT S oS B R N S S, WA AR I ST o R W g PSSP TSP e R I PRI LA I TP PG Y SR A A A IS AL S I T |




.....................

When 23Q has a cusp or a corner at a point (x,y) we require that
(x,y) = (xk,yj) e R .

The points (xk,yj) e $/Q_ are the boundary points of Q . That is

h
Q= {(xk,yj) e U/} -
A true multigrid requires the use of many coarser grids. In such
general regions the treatment of the boundary conditions on succeeding
coarser grids gets complicated. In truth, the multigrid literature has

barely touched on this question. In the case studied by Braess [2],

is a polygonal domain whose sides have slope + 1,0 or o« and the
corners all belong to the coarsest (and hence, the finest) grid. For

this case we note that (see Figure 1):
(QI.a) BQh c 3 . 1

and

(QI.b) Zf o is a side of Q with glope + 1, then all the points of

.1‘4#
oy which also lie on 3Q belong to R: . .
For any function F(x,y) defined on the (x,y) plane we write
(2.23) Fk,J - = F(Xkay\]) ’ ) ,V
(2.2b) Fk+%,j = F((k+g)h,yj) .

- (Z-ZC) Fk,j"’;i = F(xk,(j"';f)h) .
- .
ts To obtain an approximate solution of (3) we seek a grid function
‘!' {Ukj} defined on the mesh points and satisfying the system of equations: ]
of o
jf for (xk,yj) e 9
S
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(2.3a) {
1 - -
7 Pl %] Pl sl Vst g o
L
and, for (xk,yj) ¢ Q -
(2.3b) Ukj =0.
We rewrite (2.3) as -
"4
(2.4&) [LhU]kj = fkj H (Xk,yJ) € Qh ? i
v
(2.4b) Ukj =0, (xk’yj) ¢ Qh . D
R
We turn to the question of the solution of these linear algebraic ;ffj;
equations via a "two-grid" method. Let e
-
(2.5) QE = REth, QO = ROth. :-‘:-:3
Our two grids are Qh and QE . Let Sh and SE be the spaces of grid 1
functions defined on RE u R0 and RE which vanish outside Qh and QE . - -4
Our first step is to set-up "communication" between these two spaces. if?tﬂ
To be specific, we construct linear "interpolation" and "projection" opera- RN
. L
tors I, Ig so that ]
2.6 E s (Projecti o
. -> DN
(2.6a) Ih. Sh £ rojection), o
h 3
(2.6b) IE: SE > Sh . (Interpolation). - -
X
N,
S
S
............. e
.............. B O L ST "‘i‘:"‘" S Lt e I R T SO )..;J
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£ )
- Define the interpolation operator IE by
-
- (2.7a) M. = U ., if (x.,y.) <R )
ﬁi : E"kj kj’ k*7j E’ ;;:J
and, if (Xk’yj) € QO then
f [IhU] = L {p U +p u +
e g T T P enag P, s g -
(2.7) |
. 1
P, 31k, 3-1 Pk, 3ok, gord :'
L where - 4
. |
- (2.7¢) Ck3 = P, g P, 3 *Px, oy H Pk, it - !
b . A
- B
3 i i o
li Finally, if (xk,yj) € RO/Q0 then (of course) ]
[ h A
- (2.74) [IEU]kj =0. :;%ii
é; Observe that (2.7a) implies that 12 is of full rank, i.e., iiij
3 dim Range " < dim s ::f{
, E E" >
The projection operator Iﬁ is defined by

(2.8) R S
Let

(2.9) R := Range IE . )
The choice of interpolation operator 12 enables us to characterize R

as follows: T

..........................................................
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Lemma 2.1: Let Ig be defined by (2.7). Then, a function U = U(h) e Sh
is in R 1if and only if
(2.10) [LhU]kj =0 ¥(k,j) with (xk,yj) € Q.
We are now ready to describe the two-grid methods. Let G be a smoothing
operator. That is, given u0 € Sh we construct U via -
{(2.11a) u = Gu0 = u0 + B(f-LhuO) = Gou0 + Bf
{2.11b) GO = (I-BLh) f
where B is a given matrix and 2
(2.11¢) 62 = sup LpSg¥6gh? < ~
h .
(thp,xp) -
Algorithm 2.1: .
Step 1: Given u0 € Sps form U = Gu0 . K
Step 2: Construct U via
Upg = Uyyo (xk,yj) € RE -
[LhU]kj = fkj , (xk,yj) ¢ 9
Ukj =0, (xk,yj) € RO/Q0 i
That is: "relax" the equations on the "odd" points. A




..........
.................

Step 3: Set r=f-Lu, - Iﬁr.

Step 4: Solve LE¢ =re where LE is the "coarse grid operator" to be

described later.

Step 5: Set ul =0+ 12¢.

Step 6: Set u‘ -+ u0 and return to step 1.
2tep o

An important smoother G is the odd-even Gauss-Seidel scheme. That

is, define Ho - relaxation on the odd points as in Step 2 -

0 =
(2.12a) (H ")kj Upj (xk,yj) € RE’
and

0 -
(2.12b) (L, (H u)]kj = fij e (xk.yj) € Qs
(2.12¢) Ui " 0, (xk,yj) € RO/QO.

Similarly define HE , relaxation on the even points, by

E -
(2.13a) (H u)ki = Upj (xk’yj) € RO u RE/QE .
E -
(2.13b) [Lh(H u)]kj‘- fkj . (xk,yj) € QE .

Let v >0 be a integer. We obtain the generalized MGR[v] two-grid iterative

scheme by choosing

(2.14) 6 = (HEWO)Y .

We now describe two choices of the coarse grid operator LE‘

......................................
..........................................................
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Case 1: Let

(2.150)  a, o .o =L (PekniPeetngen PPl gl
2 Ck-1,j Cx,j-1

(2.15b)

1 [’k.;-apk+!s,j-1 , Pl Pkt Jﬂ
h

b . T
k+!5h]';5 —2 ck,j-1 ck+],j

(2.186) Ay = [, oo * Qo g * Ok, 3ok Db, il

Then, if (k+j) = 0 (mod 2).

(1) -
[LE U]kj - ak+!s,j+%uk+1,j+1 B ak-‘i,j-%uk-hj-l
(2.16)
" Presg, 31+, -1 7 Pk, il ge1 kgl

Case 2: (The Standard Case): if k+j = 0 (mod 2) then

(2),9 . I
[ W= 7 TPian okt 51~ Phost 3-4%ke1, 501
(2.17a)

“Prty, j30k-1, -1 7 Potg, j4k-1, 541 *SkiVkg!

where

(2.170)  Sys = (P jos * Pcaty, 5o ¥ Picosg, 5 * Pty o)

.......................................
........................
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3. Analysis of the Algorithm figj
We begin our analysis with an observation which is (by now) well known iiif
among multigrid theorists (see [7]). Let Lol
~ _ +E .h
(3.1) LE := IthIE .
Consider Steps 4-5 of the two-grid iteration. Suppose we replace LE by }- .
tE’ j.e., suppose we find the function ¢ which satisfies
: Le¥ = re
f and set ’.-_. .-.l‘
g e
g o' =G+ 1y o
We claim that 53.:
] S
Lyu = f, T
i.e. u] is the desired solution! To see this we set T
(3.2a) E=U-4
and observe that Step 2 implies that if k + j =1 (mod 2), then -
(Lhe)kj = (LhU-Lhu)kj = (f"'hu)kj =0.
Hence Lemma 2.1 asserts that there is a function V ¢ SE and ;;1
~ _ h 5
(3.2b) €= IgV. g

............................

..........................

P A
-------
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We now verify that

_ +E hyy = 1E =
Lev = Ih(LhIEV) hLhE = re
Hence,
p =V

and

~ h A A
(3.3) u - IEw =y - =y
Unfortunately we have chosen Step 4 with LE and not EE . This choice was

not merely pique on our part (or the part of Braes and Ries, Trottenberg and
Winter). The point_ is -- having chosen LE as a five point star we can now
proceed to replace Step 4 with a new two grid step -- i.e. we can build a

true multigrid.

hin I Puath g . - Pl p P IR R A 03 T e e ae e e N S TR T e T Y Y W W W T T O TR A e TR T

REEE A A

In any case, the problem of Step 4 is seen to be ;ff
where, as we see from Lemma 2.1, Igw is the Lh projection of € into i.
R. Hence -
(3.42) N, = H < N -

h h h -—
We will give a complete description of EE in the appendix. For now, we
write

-1 1t -
(3.5) LE =3 LE t3 LE .
where EE is defined by this equation. Observe that both EE and L =
(efther Lé]) or Léz)) are symmetric, positive definite operators. r
Hence the associated EE is a symmetric operator. Our main estimate is -
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Lemma 3.1: For LE = Lé]) or LE = Léz), there is a constant K, depending
only on [|vp]||_, the maximum norm of the first derivatives of the diffusion

coefficient p(x,y), and Po such that, for all ¢ ¢ SE’ ¢ + 0 we have

<EE¢,¢)
(3.6) -Kh < ——— < 2(1+Kkh) .
_(LE¢,¢)

Proof: See Theorem A of the Appendix.
Consider the eigenvalue problem
(3.7a) g-L)w=0, vto
which is equivalent to
(3.7b) (AL-L_L.)y=0, yi$o0.
Using (3.5) we see that this problem is equivalent to
(3.8a) [N - v =0.

From Lemma 3.1 we find

(3.9) ];ﬁh <A 5.3+§Kh )
Theorem 3.1: Let

eo =U - u0 s sl =U - u1
then
(3.10) el < 2| e°||Lh.

....................................................................
.........................................................
...............................
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Proof: We have

Using (2.11c) we see that
(3.11) L&, < el -
h — h

From (3.2a), (3.3b) and Step 5 of the multigrid algorithm we have

(3.12a) e =81l = 1My-0)
and
(3.12b) LE¢ = st . Zgi%
Hence {?ﬁé
(3.13) v-o= (-l 0w . —
EE - -4
Thus ;:i:
11, h h _o(1E b
“rf:ﬂ
- 1 b -
= 2L (=L L wa (I-Lg L) Wop ’
(3.14b) || € ||Lh- 2€[I-Lgle Ledbgw, [I-Lelp Ll wie ;
Since the eigenvalues of LE]E are also the eigenvalues of the symmetric f‘
operator L%LE]L% » (3.9) implies that the eigenvalues u of the symmetric =

operator (I-EELE]EE) satisfy

1 1 -
-§{1+Kh) <uc< §(1+Kh) . _—




..........................
......................................................
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Thus, (3.18b) implies L

2,2 oow)g = 2?

1,2 2,0k h E\T "
ll e HLh < atLnlivg (L Iewa (1) ey "

21 h, .h

2 A A 2 P2l 2 -
ey =Bt -]

This result, toget™er with (3.4a) and (3.11) implies the Theorem.

-~ d
R

. >
e
14




16

4. Experimental Results

In order to demonstrate that the results of section 3 are valid for
the variable coefficient case an experimental project was undertaken.
The essence of this project was to write a computer program which imple-
mented Algorithm 2.1. By experimenting with different functions p(x,y)
and different true solutions u(x,y) it was shown that formula (2) of
section 1 is valid for the variable coefficient case. The region Q is

the unit square.

The computer program runs in an interactive fashion and allows the
user to provide a number of parameters. These include N, the number T
of points on a side of Qh’ the fine grid and v, the number .of smoothing

iterations. Starting with a particular initial guess, Algorithm 2.1 was

then repeated until the discrete L2 norm of the residual was less than

10'8. For the initial guess UO, interior points of QE were set to 5

while interior points of QO were set to -5.

Experiments were done with L., the coarse grid operator chosen to be -'?
both Lé” and L) . The calculation of Lé]) was complicated by the s
fact that for points of Q. for which Lé]) refers to points of 99, 1ﬁfz
formula (2.15c) does not apply. The reason for this is because the computa- E f
tion of either Qssgey OF bkt%j$% involves referring to points outside n{
of @,. Of course since Uy, =0 if Upj € 3%, we set ay,, ., and i
bkikj$k to zero when Ukt]ji] and Uki]jt] are in 3Q - However, we N f
still need a value for dkj for the two nearest interior points. For the g
four corners points, we set dkj to be the value of dkj of the nearest -' a
interior point. As the mesh gets finer, this approximation to the true f:?j

R
iﬁ;
e B e e e e e e e R D e e e et
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dkj improves. However, in almost all of the experiments the rate of

(1)

convergence using LE was not quite as good as the rate obtained
using Léz).

The tables below 1ist the functions p(x,y) and the true solutions
u(x,y) wused for the experiments. For each problem the numerical results
obtained using both Lé]) and Léz) are displayed. N corresponds to the
number of interior points on a side of Qh and v corresponds to the number

of smoothing iterations. The smoother used was the odd-even Gauss-Seidel

scheme as described in section 2. o(v) in the tables corresponds to the

o

! theoretical rate given in equation (2) of section 1. The theoretical rate RS
3} has c=ly been proven to be valid, when v > 0, 1in the constant coef- ?Efi
fj ficient case. However, as can be seen from the numerical results it ;i;:
_i appears to be valid in the variable coefficient case as well. '“‘:
| In conclusion, the numerical results demonstrate the validity of ;i;g
E? Theorem 3.1 for the case v = 0 and support extending equation (2) of ;i?f
.I section 1 to the variable coefficient case. :::j

., ! . .
, ' AT
RPN G R Y

R
o oo
4 ‘et s

-— 4

. ."-.'-p ‘e

. - %
A -
PERAERIERY AR
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1
‘ Table I, Experimental Results
E Problem 1, p(x,y) =1, u(x,y) =0
| _ _ . (2)
be = Lg Le = Lg
i N v 0 1 2 3 N v 0 1 2 3
: 15 .4858 .0646 .0344 .0200 15 .4858 0646 .0344 .0200
31 .4844 .0696 .0375 .0252 3 .4844 0696 .0375 .0252
63 .4836 .0708 .0386 .0263 63 .4836 0708 .0386 .0263
) o(v) .5000 .0741 .0410 .0283 a{v) .5000 .0741 .0410 .0283
L Problem 2, p(x,y) =1, u(x,y) = sin mx sin my
! (
(1) _,(2)
. Le = Lg be = Le
’ v v
i N 0 1 2 3 N 0 1 2 3 D
- 15 .4858 .0646 .0344 .0200 15 .4858 .0696 .0344 .0200 )
; 31 .4844 .0696 .0375 .0252 3 .4844 .0696 .0375 .0252
; 63 .4836 .0708 .0386 .0263 63 .4836 .0708 .0386 .0263
d -4
‘ o(v) | .5000 | .0741 | .0410 | .0283 a(v) | .5000 | .0741 | .0410 | .0283 ]
. T
_‘ﬁ
:'.: 3
] o
o
. <
g e
- o
R e e e e e e e e e e e e e . . j‘
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=
Problem 3, p(x,y) =1, ulx,y) = x(1-x)y(1-y) L)
_ () _ L (2) e
Le = Lg be = Lg o
AV !
NN 0 1 2 3 » 0 1 2 3 :
15 | .4858 | .0646 | .0344 | .0200 15 | .4858 | .0646 | .0344 | .0200 3
{ 31 | .4844 | .0696 | .0375 | .0252 31 | .4844 | .0696 | .0375 | .0252 B
]
63 | .4836 | .0708 | .0386 | .0263 63 | .4836 | .0708 | .0386 | .0263 ]
alv) | .5000 | .0741 | .0410 | .0283 o(v) | .5000 | .0741] .o0410 | .0283 -]
—
' Problem 4, p(x,y) = XY, u(x,y) = xe® sin mx sin my j‘
_, () - (2 S
LE - LE LE LE - :. ::
i NN 0 1 2 3 » 0 1 2 3 —
15 | .4863 | .0760 | .0437 | .0292 15 | .4858 | .0643 | .0342 | .0199 "
31 | .4881 | .0742 | .0425 | .0303 31 | .4840 | .0697 | .0373 | .0252 o
| 63 | .4842 | .0720 | .0401 | .0283 63 | .4841 | .0709 | .0384 | .0264 e
-~ .- 4
o(v) | .5000 | .0741 | .0410 | .0283 o(v) | .5000 | .0741 | .0410 | .0283 S
_ 1 - XY oy :
' Problem 5, p(x,y) = TR u(x,y) = e’ sin nx sin my
=g
_ (1) - (2) -
Le = Le |'E LE R
Vv v
_ » 0 1 2 3 \ 0 1 2 3 1
) 15 | .4881 | .0708 | .0393 | .0270 15 | .4839 | .0643 | .0339 | .0199 -
: 31 | .4819 | .0713 | .0398 | .0276 31 | .4819 | .0694 | .0373 | .0250 s
: -y
: 63 | .4820 | .0709 | .0386 | .0268 63 | .4820 | .0706 | .0381 | .0261 ,;i
) o(v) | .5000 | .0741 | .0410 | .0283 o(v) | .5000 | .0741 | .0410 | .0283 -
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Problem 6, p(x,y) = e*(1 +% sin my), ulx,y) = & sin mx sin ny ‘
R _ () (2) =
i ‘e le be = Le -
i Y] Vv :
- N 0 1 2 3 N 0 1 2 3 1
| 15 | .4879 | .1084 | .0727 | .0565 15 | .4869 | .0686 | .0377 | .0255 3
N T4
G 31 | .4854 | .0901 | .0582 | .0442 31 | .4851 | .0710 | .0390 | .0270 O
% 63 | .4851 | .0784 | .0473 | .0350 63 | .4850 | .0715 | .0390 | .0270 R
: o(v) | .5000 | .0741 | .0410 | .0283 o(v) | .5000 | .0741 | .0410 | .0283 )
Problem 7, p(x,y) = e X, u(x,y) = (1-*)(x-1)y cos lréx 3
- 2 . () -
. Le = Le e = Le
-~ 4

- S =
o N 0 1 2 3 N 0 1 2 3 ]
L 15 | .4857 | .0797 | .0482 | .035) 15 | .4853 | .0650 | .0347 | .0207 Y
H 31 | .4842 | .0739 | .0431 | .0312 31 | .4841 | .0697 | .0376 | .0253 i
Vo 63 | .4836 | .0714 | .0399 | .0278 63 | .4835 | .0708 | .0386 | .0263 T
o o(v) | .5000 | .0741 | .0410 | .0283 o(v) | .5000 | .0741 | .0410 | .0283 o
Tb‘ (sin 22X cos my) -X "1
E Problem 8, p(x,y) = e 2 YV ulx,y) = e Mx(x-1 Yy(y-1)
L ) |
'i.? LE - LE LE - LE ;.
P' 1
. S| o ] 2 3 AN 1 2 3 i
E;'. 15 | .4849 | .0772 | .0451 | .0296 15 | .4843 | .0645 | .0342 | .0202 T
" S
£ 31 | .4839 | .0751 | .0437 | .0313 31 | .4837 | .0697 | .0373 | .0253 '

- T
E-_‘: 63 | .4842 | .0721 | .0404 | .0289 63 | .4842 | .0710 | .0385 | .0264 ~
E alv) | .5000 | .0741 | .0410 | .0283 o(v) | .5000 | .0741 | .0410 | .0283 :
c.. 4l

: i
= ]
R R R N S o N R S R R R R L
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T fork<x<%, %xsgys<h+x, X-kgygs/n.-x—'

Problem 9, p(x,y)
6 otherwise
L

u(x,y) = e Vx(x=1)y(y-1)
_ (1) -, (2)
L = Ly be = Lg
\Y] Vv

N 0 1 2 3 N 0 1 2 3 :
15 .4848 | .0648 | .0311 | .0174 15 L4649 | .1815 | .1015 | .0634 ]
1
31 .4857 | .0698 | .0377 | .0248 31 .4854 | 1186 | .1291 | .1046 = 4

63 .4855 | .0711 | .0389 | .0266 63 .4855 | .0712 | .0393 | .0275
a(v) | .5000 | .0741 | .0410 | .0283 o(v) | .5000 | .0741 | .0410 | .0283 e
_.'.]
=
bond
1
S
-
1

=
-
A

i
.. ?
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Appendix
In this section we determine EE and the quadratic forms -
<LEw.w>, <LEw,w>, <LE¢,w)
Let U e SE’ let (Xk’yj) € QE .  Then
(A.1) (LUl =L 1)
. %k T2 hTE kG
For any Ve S,, [th]kj involves the four values Vkﬁ],j’ vk,ji]'

vertices

(A.2a) I:
(A.2b)  11:
(A.2¢) 1II:
(A.2d) Iv:

~

E

(A.3)

Therefore we consider the four squares I, II, III, IV (see fig. 2) with

.....................................
----------

{(Xk9yj)a (Xk+]9Yj+])’ (xk+2’yj), (Xk+],yj_1)} s :;;
{(st.yk)’ ( k'ﬂ "yJ‘H)’ ( ,YJ+2) (Xk_.|,yJ+.l)} s

txay4)s (X _1s¥50 ) (4 p0y5)s (X _ys¥5000

j+1

{(xk,yj), (xk_],yj_1), (xk,yj_z), (xk+1,yj_1)}.

In each square the value of [IEU] at the center point is a weighted average

(given by (2.7b), (2.7c)) of the values of U at the corners. Thus, in general

L is a 9-point operator based on the 9 vertices of these four squares.

Since LE is a symmetric operator it takes the form

[LeUdis = Eeslhs = a1, 3%+2,5 ~ ®-1,3%-2, 5
By, 341,42 7 Br 51, 52
-y .. U . -y ., U .
k+%’J+% k+]’J+] k'%!J'% k']$J']

-0 R . -
kel §4350k-1,341 ~ Oknsg, jo¥ke1, 51 .

.....................................

..................
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Lemma A.1: Let

- ¢0 pe .
(A.4a) Ees = Eij * B
where
Eo =q +q + 8 + B + l'
ki~ %k+1,5 T %-1,3 T PiLi-1 T Pk, i T Ve, ik
(A.4b)
t Viasg, gt b Okt gk T Ok, ey
Then —
(L) = Ja [w -y, 12 5
EY’ k+1,37k+2,5  "kJ oy
(A.5) +18 [y -y ]2+2Y v -y, 12 =
’ k,j+1-"k,j+2  "kj k+s, jHs " k+1,3+1 k] -
+10 [y N L I i
k+k,3-%"Tk+1,3-1 " Tkj ki"kj * T
Proof: Summation by parts. i
Similar calculations yield ;
Lemma A.2: Using the definitions (2.15), (2.17) we have .
(1) - Y
(A.6)
2 T
+ Z bk"‘%,j';i[wk"'] ,j_'l = ‘ij] ’ ..
and -
(2), ,y o] 2 o
e 0s0) = = T P 5ussl¥kat, o1 ™ Vi) S
(A.7) 2h

1 2
) L Preasg, 5 ¥a, 31 " ¥gd
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We now compute the contribution of each square to [LEU]kj and the two
quadratic forms. In evaluating [LhIEU]kj we have five terms. The four
terms

h
(120)

h
Pt 5 TEVker, 50 Pk, el TEDk, o

are clearly associated with squares (Iil) and (%6) respectively. It is

convenient to agree that

. . R I
pki%,jukj is associated with square (III)’
and

. . . I1
pk,jikukj is associated with square (Iv) .

Let Ekj(R)’ akt]’j(R), Bk,jil(R)’ Ykig,jtg(R)' okt%,j¥k(R) denote the
contributions of square R to the corresponding coefficients Ekj’ e j?
of E

B, 3217 Yity, g, Oktly, 7% E -

Consider square I. We must consider two cases, either (xk+],yj) € Qh
or (xk+],yj) ¢ Qh . The following geometric lemma is essential to under-

standing the computations in the latter case.

Lemma A.3: Suppose (xk+],yj) ¢ Qh . Then either (xk+2'yj) ¢ 0 or the
line segment from (xk+1,yj) to (xk+2’yj) is not entirely in Q. Further

(xk+] vyj,,,]), (xk+] "y.]"]) ¢ QE .

Proof: (see Figure 3). Since (xk,yj) € QE the points (xk+].yj+]), (xk+1’yj)’
(xk+],yj_]) € Q% . On the other hand, (xk+1,yj) ¢ Q implies that either
(xk+2,yj) or the line segment from (xk+1,yj) to (xk+2’yj) . If

(xk+2,yj) ¢ @ then clearly (xk+].yj+]) and (xk*].yj_]) ¢ Q.

e
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If (xk+2’yj) e 2 then a portion of 3R crosses the line segment ’
Xep] S X S Xpyps ¥ 5 yj . If that portion of the boundary continues smoothly ;&
near (xk+1’yj)’ then the line segments from (xk+1’yjtl) to (xk+2’yj) -~
are not entirely in ®. Finally, if there is a non-convex corner (x,y)
near (xk+1’yj) that corner (x,y) € RE . Hence that corner must be
': (Xk+1’yj+1) or (xk+],yj_]) which is therefore not in 2 . The other one .
is not in QE because h is less than % the length of smooth segments
[ of 3Q.
E‘ We return to the calculation of Ekj(I)’ ak+1,j(1)’ Yk+k,j+k(1)’ and ]
g Ok, § (I). Square I does not contribute to the other coefficients. .
< 9\]'5
Case 1: (Xk+]’yj) € R ;;.
A straight forward calculation yields f;_
(A.8a) (1) = - (Py sy j)z e
.8a E AI)=— |p . - 2 s o
kd 2n2 kP8 Gy o
p T T
(A.Sb) ak+] j(I) = 1_2 k+!5<,:,L k+%2,3 .
’ 2h k+1,]
3 1 Py, i Pi+1, j+k -
5 (A.8c) Y o (1) = — 2 2,
iz .
b _ b Py, Prar, gy .
(A.8d) O, j-i 1) = —3 T

k41,

...............
.....................................

PR T e e TN S S A P PR S AP SRR AN GRS READRS e
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Case 2: (xk+],yj) p Qh:

.
23

In this case we set

L e
el

LI I
P2 B B W v A

r

r
} .
I,

(A.9a) Eey(1) = —

N
¥
N
©
a3
*
-
.
-

PR | Py

1 Pung, g Pisr, o S

2h2 ck+1,j o

re

(R.9b) Ticasg, jot 1)

1 Prwy P gy <

o] . (1) = . o]
k"’;i,J'% 2h2 Ck+] . J -

(A.9c)

(R.9d) oy 51 = Bl = Yy 51D = 0 50(T)

. - - _ =~
Observe that ay,y ; >0, and since Uke2,5 = Yker, 41 = Uker,j-1 = 0o o

the choices of ak+1,j(1)’ Yk+5,j+%(1) and °k+5,j-s(l) do not effect :3;&
the value of LE . L

Consider Square II.

Case 1: (xk’yj+]) € Qh: 1353

In this case we obtain .

Py 3
(A.10a) By (1) = g [py g - —d®

1 Pi, i Pr, ey .
(A.10b) B (I11) = — —2 nl- 2, T
k,j+l 2h2 ck,j+1
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1 Py, i+ Py, j+1

Y o (I1) = —5
k+lg, j+s 2me  C,j4

(A.10c)

1 Pk, 0 Pr-g, 41

g ., (I1)

(A.10d)

Case 2: (xk’yj+]) € Q:

Using arguments similar to those used in case 2 of square I we have

!
(A.11a) Eys(11) o7 P,
As for Yk+%,j+k(11) and °k-k,j+&(ll) we may use the formulae of (A.10c) g

and (A.10d). Finally

(11) - (11) .

k-1, 4% -——1

is symmetric it is not necessary to compute the contributions

(A.11b) Bk,j+](II) = E4(11) - Vi, j+i

Because LE

from squares III and IV. We now make a similar decomposition of the coefficients

R
of LI, set "

; 1
21 P j Prar, oy
(A.12a) ak+5’j+%(l) 7 s ,
P, s P )
(A.12b) a =1 ko j¥s ke, gn

Ch, 4

1 P, Pr41,j-%
(A.12¢) b (1) == s s ,
k+H’J-8 hz Ck*] ,j
(A.12d) b . (11) = L ki Pk gl
k=35, j+ h2 Sk 41
£ e e e e e e e T e

.......

..............
......
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(A.13) d

1= B, D)+ By (1)

Let (II:EU,U>I and (Lé])U,U)I denote the contribution of square I

to the quadratic forms (EEU,U) and <L“)U,U) respectively. Then, using

E
lemma A.1 we see that 3
I <LEU)-‘D>I (!k+.| ,j(I)[wk"'zoJ wk’J] +

‘ B .. (1)L - 24 (N[ 12 :
| k1,3 T 501 " Va1, 5918 Y Vi, 5o D 0 501 7 Y, ]

: (A.11a) ! ) , .
3 * T, 3o D a2, 57, 5117+ O 5N D0 g0 - ¥y —
2 o
+ ok+3/z,j"‘;i(1)[wk+],j+] B wk+2,jJ ? _:‘.(f: :'_'
and ;‘,_“ :_*1-"
RN
( (1) ’ -::;.:ﬂ
L W0 = Ay, 5 DG~ ¥y s
..:.‘..:..

2 2
(A-]lb) l+ ak+3/2$j-;i(l)[\pk+2’j -wk_'.'l ,J.']] + bk"’;i,\]';f(‘)[wk"’] ,j'] -‘pk‘j] - . 1
2 -
* Byt o D a1 Yz, g0 1]
]
A basic inequality is "
Lemma A.4: Let y e S. then ilx‘

E

’ 2 2 _ 2 -
g (A120) Wiy 51 =Y, 3107 2 2000 50 "z, 537+ Doz, 3~ Hent 51170 o
- ]2 < 2{ 2+ - 1%) ’
R (A120) Ty oy 501 = Vet 510 2 20 500 - W Yk, 3 " Yket, 300 R
# (A.12¢) [ P Ypap 12 Dy 50 1 T
% A2e) Loy 541~ ¥ka1,3-17 2 W 30 " %2, g k+2,5 " Y41, -0 CLy
2 2 N

* Doar, 301 0,500+ D5 W 30 Y
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2 2 2
(A132) Do, 5= ¥, 31" 2 200,57 Ve 1 * Do g - g1

2 2 2
(A.13b) [wk+2,j -‘bkj] =< 2{[wk+2,j 'wkq.] ,j-]] + I:wk+'| »J-1 -wkj] }

2 2 2
(A13¢) [oeep 57,30 2 Dag, 5 Yk, 30" * Doay 51 = Wiy

sJ -

2 2 f

* Doz, 57V, 3137 D o1 w9l 5

Proof: Apply the triangle inequality and the inequality 2ab < a + b2, S

Lemma A.5: Suppose (xk+] yj) € Q- Then there is a constant K

depending only on | vp||_ and Py such that

(A.14) 0 5<Eé”w,w>1 < 2(1+Kh) <Lé] ’w.wl .

",'-"-'-'1 o
Ve PR P
o st A .
P R .
AR STy . .
. e , .
RN . . .
RPEILYS FreA . .

Proof: MNote that

!
i

1. =1 1M
2<LE %WI -<LE¢,1P)I -E(LE IJMWI .

RSN R S R
» ' R

.t R T N B
Sttt
el AR
K C AN
Al . )

PO B

From (A.8¢c), (A.8d2, (A.12a) and (A.12c) we have

‘ - ]
(A.]Sa) Eak*’;i,j"';s(l) - Yk+;§,j+;f(l) ) ..

1 - e
(A.150) 2 Pk, 3t 1) 7 O, g1 -

From (A.10c), (A.10d), (A.12b), (A.12d) we see that

1
(A.]Ga) E ak+3/2,j';§(l) = Yk+3/29j'}§(l) s ~.'.:;.
u:iq
ffii
1 w

.....................
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Therefore from (A.11a) and (A.11b) we have

~(1) - 2
(LE IP,IWI = ak+’l,j(l)[¢k+2,j 'wk,j]

(A.17) )
* Byat, i D a1 - Vi, 513

Thus, we have established the left hand inequality of (A.14). Using (A.12),
j.e., the definitions of ak+%,j+%(1)’ bk+s,j-k(l) etc. and (A.8b), the
definition of ak+1,j(l) and (A.10b), the definition of Bk+1,j(l) we see

that there is a constant K, depending only on [|Vp]|_ and Py such that

a .
(A.18a) S P l(1+Kh)

aI -2

Bk+] ] 1

(A.18b) £20d ¢ Liy4kn)

aI -2
where
(A18c) ap = any of {ayu, sue Qg Pk, Dty o)

Therefore (A.17) and (A.12c), (A.13c) and (A.17b) yields the right hand
inequality of (A.14).

Corollary:

(A.19) Ll < vy < 30wy ally,e

2 't E

Lemma A.6: Suppose (xk+] yj) ¢ Qh . Then the conclusion of lemma A.6 and

its corollary hold.

=
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Proof: Calculations similar to those of lemma A.5 now yield
v _ 2
(A.20) 0 < CLebspdy = “k+1,j[¢k+2,j -wkj] .

Thus, as before, the left hand inequality of (A.14) holds. In this case
(A.11a), (A.11b) and (A.10c), (A.10d) imply

o .
' _£§141 < (1+Kh) .
-

Thus, the lemma is proven.

Theorem A: There is a constant K, depending only on ||vp|_ and

o
o

~

such that, for both choices of LE(=Lé1),Lé2)) and associated LE , if

¢ 0 and ¢ SE we have

(Lo¢,)
< 2(1+Kh) .

_E7
-kh i (LE¢’¢) -

Proof: The arguments which give lemma A.5 and lemma A.6 extend to all the
squares, II, III and IV. Thus, those lemmas imply that the theorem holds
for Lc = L), The case of L. = L{Z) follows from (3.5) and the ob-
servation that

(1-Kh) <Lé1)w,w>_5 (Léz)w,w)_i (1+kh) <Lé1)w,¢>.
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